Interpolation
Lagrange polynomial
Given a set of k+1 data points
(x0,y0),…,(xj,yj),…,(xk,yk)
where no two xj are the same, the interpolation polynomial in the Lagrange form is a linear combination
L(x):=∑j=0kyjℓj(x)
of Lagrange basis polynomials
ℓj(x):=∏0≤m≤km≠jx−xmxj−xm=(x−x0)(xj−x0)⋯(x−xj−1)(xj−xj−1)(x−xj+1)(xj−xj+1)⋯(x−xk)(xj−xk),
Remainder in Lagrange interpolation formula
R(x)=f(x)−L(x)
ℓ(x)=(x−x0)(x−x1)⋯(x−xk)R(x)=f[x0,…,xk,x]ℓ(x)=ℓ(x)f(k+1)(ξ)(k+1)!,x0<ξ<xk,
The remainder can be bound as
ℓ(x)(k+1)!minx0≤ξ≤xkf(k+1)(ξ)≤R(x)≤ℓ(x)(k+1)!maxx0≤ξ≤xkf(k+1)(ξ)
Newton polynomial
divided differences
[yν]:=yν,ν∈{0,…,k}[yν,…,yν+j]:=[yν,…,yν+j−1]−[yν+1,…,yν+j]xν−xν+j,ν∈{0,…,k−j}, j∈{1,…,k}
x0x1x2⋮xnf(x0)f(x1)f(x2)f(xn)f(x1)−f(x0)x1−x0f(x2)−f(x1)x2−x1⋮⋮f(x2)−f(x1)x2−x1−f(x1)−f(x0)x1−x0x2−x0⋮⋮
⎛⎝⎜⎜⎜⎜⎜f[x0]0⋮0f[x0,x1]f[x1]⋮0f[x0,x1,x2]f[x1,x2]⋮0……⋱…f[x0,…,xn]f[x1,…,xn]⋮f[xn]⎞⎠⎟⎟⎟⎟⎟
Given a set of k+1 data points
(x0,y0),…,(xj,yj),…,(xk,yk)
where no two xj are the same, the Newton interpolation polynomial is a linear combination of Newton basis polynomials
N(x):=∑j=0kajnj(x)
with the Newton basis polynomials defined as
nj(x):=∏i=0j−1(x−xi)
for j>0 and n0(x)=1.
The coefficients are defined as
aj:=[y0,…,yj]
where
is the notation for divided differences.
Thus the Newton polynomial can be written as
N(x)=[y0]+[y0,y1](x−x0)+⋯+[y0,…,yk](x−x0)(x−x1)⋯(x−xk−1).
The remainder can be bound as
ℓ(x)(k+1)!minx0≤ξ≤xkf(k+1)(ξ)≤R(x)≤ℓ(x)(k+1)!maxx0≤ξ≤xkf(k+1)(ξ)
Hermite interpolation
Repeat points divided differences:
Repeat points:f(x0)=a, f′(x0)=b, f′′(x0)=c, …f[x0,x0]=limx1→x0f[x0,x1]=limx1→x0f(x1)−f(x0)x1−x0=f′(x0)f[x0,x0,x0]=limx1→x0x2→x0f[x0,x1,x2]=12!f′′(x0)⋯f[x0,…,x0]=limxi→x0f[x0,x1,…,xn]=1n!f(n)(x0)
Runge's phenomenon
In the mathematical field of numerical analysis, Runge's phenomenon is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points. The discovery was important because it shows that going to higher degrees does not always improve accuracy.
Linear interpolation
If the two known points are given by the coordinates (x0,y0) and (x1,y1), the linear interpolant is the straight line between these points. For a value x in the interval (x0,x1), the value y along the straight line is given from the equation of slopes
y−y0x−x0=y1−y0x1−x0
Interpolation remainder
Polynomial remainder
x |
0 |
1 |
2 |
f(x) |
0 |
1 |
1 |
f′(x) |
0 |
1 |
|
P(x)=94x2−32x3+14x3
Remainder:
R(x)=f(x)−P(x)R(0)=R(1)=R(2)=0, R′(0)=R′(1)=0
Assume:
R(x)=k(x)x2(x−1)2(x−2)φ(t)=R(t)−k(x)t2(t−2)2(t−2)
It follows that,
φ(t)=0, t=x,0,1,2φ′(t)=0, t=0,1
There are 5 points that
, as can be seen from Roller's Theorem.
So:
∃ ξx∈[min{x,0,1,2},max{x,0,1,2}]φ(5)(ξx)=0
then
φ(5)(t)=R(5)(t)−k(x)[t2(t−1)2(t−2)](5)=f(5)(t)−P(5)(t)−k(x)⋅5!=f(5)(t)−k(x)⋅5!
substitute
φ(5)(ξx)=f(5)(ξx)−k(x)⋅5!=0⇓k(x)=f(5)(ξx)5!
At the end,
R(x)=f(5)(ξx)5!x2(x−1)2(x−2), ξx∈[min{x,0,1,2},max{x,0,1,2}]
Linear remainder
f(x) is primal function, I(x) is linear interpolation polynomial.
a=x0<x1<⋯<xn=bf(xi)=I(xi)=yi, i=0,1,…,n
Theorem:
h=sup0≤k≤n−1(xk+1−xk)maxa≤x≤b|f(x)−I(x)|≤h28maxa≤x≤b|f(2)(x)|
Prove:
According to polynomial remainder, we can get:
∃ ξ∈[min{x,xk,xk+1}, max{x,xk,xk+1}]maxxk≤x≤xk+1|f(x)−I(x)|=maxxk≤x≤xk+1∣∣f(2)(ξ)2!∣∣⋅|(x−xk)(x−xk+1)|
maxxk≤x≤xk+1∣∣f(2)(ξ)2!∣∣⋅|(x−xk)(x−xk+1)|=maxxk≤x≤xk+1∣∣(x−xk)(x−xk+1)2∣∣⋅maxxk≤x≤xk+1|f(2)(ξ)|
On one hand,
{(x−xk)(x−xk+1)2}′=0⇓x=xk+xk+12hk+1=xk+1−xkmaxxk≤x≤xk+1∣∣(x−xk)(x−xk+1)2∣∣≤h2k+18
On the other hand,
maxxk≤x≤xk+1|f(2)(ξ)|=|f(2)(ξ)|≤maxxk≤x≤xk+1|f(2)(x)|
It follows that,
maxxk≤x≤xk+1∣∣(x−xk)(x−xk+1)2∣∣⋅maxxk≤x≤xk+1|f(2)(ξ)| ≤ h2k+18maxxk≤x≤xk+1|f(2)(x)|
So
maxxk≤x≤xk+1|f(x)−I(x)|≤h2k+18maxxk≤x≤xk+1|f(2)(x)|∃ j, maxa≤x≤b|f(x)−I(x)|=maxxj≤x≤xj+1|f(x)−I(x)|≤h2j+18maxxj≤x≤xj+1|f(2)(x)|≤h2j+18maxa≤x≤b|f(2)(x)|∵hj+1≤sup0≤k≤n−1(xk+1−xk)⇓h=sup0≤k≤n−1(xk+1−xk),maxa≤x≤b|f(x)−I(x)|≤h28maxa≤x≤b|f(2)(x)|
Approximation theory
Theorem
minimax Approximation
∥f(x)−y(x)∥∞=maxa≤x≤b|f(x)−y(x)|
Least-Squares Approximation
∥f(y)−y(x)∥22=∫baρ(x)[f(x)−y(x)]2d
Inner product space
weight function
∃ ∫ba|x|nρ(x)dx, n=0,1,…g(x)≥0, ∫bag(x)ρ(x)=0if g(x)≡0, then ρ(x) is weight function in (a,b)
Inner product between f(x) and g(x)
(f,g)=∫baρ(x)f(x)g(x)dx
Cauchy-Schwarz
|(f,g)|≤∥f∥2∥g∥2
triangle inequality
∥f+g∥2≤∥f∥2+∥g∥2
Parallelogram theorem
∥f+g∥22+∥f−g∥22=2(∥f∥22+∥g∥)2
Linearly independent
{φ1(x),φ1(x),⋯,φn(x)}a1φ1(x)+a2φ2(x)+⋯+anφn(x)=0⟺a1=a2=⋯=an=0